PRODUCT
-
Deep Groove Ball Bearing
- Deep Groove Ball Bearing 6000 Series
- Full Complement Deep Groove Ball Bearing 6000-V Series
- Flanged Deep Groove Ball Bearing F6000 Series
- Deep Groove Ball Bearing 6200 Series
- Deep Groove Ball Bearing 6200NR Series
- Deep Groove Ball Bearing 6300 Series
- Deep Groove Ball Bearing 6300NR Series
- Deep Groove Ball Bearing 6400 Series
- Deep Groove Ball Bearing 6000NR Series
- Deep Groove Ball Bearing 6700 Series
- Flanged Deep Groove Ball Bearing F6700 Series
- Deep Groove Ball Bearing 6800 Series
- Full Complement Deep Groove Ball Bearing 6800-V Series
- Flanged Deep Groove Ball Bearing F6800 Series
- Deep Groove Ball Bearing 6900 Series
- Full Complement Deep Groove Ball Bearing 6900-V Series
- Flanged Deep Groove Ball Bearing F6900 Series
- Deep Groove Ball Bearing 62200 Series
- Deep Groove Ball Bearing 62300 Series
- Deep Groove Ball Bearing 63000 Series
- Deep Groove Ball Bearing 63800 Series
- Full Complement Deep Groove Ball Bearing 63800-V Series
- Deep Groove Ball Bearing 16000 Series
- Double Row Deep Groove Ball Bearing 4200 Series
- Double Row Deep Groove Ball Bearing 4300 Series
- Deep Groove Ball Bearing Inch R Series
- Deep Groove Ball Bearing Inch RMS Series
- Miniature Deep Groove Ball Bearing
-
Spherical Roller Bearings
- Spherical Roller Bearing 21300 Series
- Spherical Roller Bearing 22200 Series
- Spherical Roller Bearing 22300 Series
- Spherical Roller Bearing 23000 Series
- Spherical Roller Bearing 23100 Series
- Spherical Roller Bearing 23200 Series
- Spherical Roller Bearing 23900 Series
- Spherical Roller Bearing 24000 Serie
- Spherical Roller Bearing 24100 Series
- Split Style Spherical Roller Bearing
- Thrust Roller Bearing
-
Joint Bearing
- Radial Spherical Joint Plain Bearing GE...E
- Radial Spherical Joint Plain Bearing GE...ES
- Radial Spherical Joint Plain Bearing GE...ES-2RS
- Rod End Joint Bearing PHS/PHSB
- Rod End Joint Bearing GE...C
- Rod End Joint Bearing SI...TK
- Rod End Joint Bearing NHS
- Rod End Joint Bearing GIR...DO
- Rod End Joint Bearing GIR...C
- Rod End Joint Bearing GIR...UK
- Rod End Joint Bearing SQZ...RS
- Rod End Joint Bearing SA...T/K
- Rod End Joint Bearing POS/POSB
- Rod End Joint Bearing NOS
- Rod End Joint Bearing GAR...DO
- Rod End Joint Bearing GAR...C
- Rod End Joint Bearing GAR...UK
- Rod End Joint Bearing SQ...RS
- Rod End Joint Bearing SA...E
-
Angular Contact Ball Bearings
- Single Row Angular Contact Ball Bearing 7000 series
- Single Row Angular Contact Ball Bearing 7200 series
- Single Row Angular Contact Ball Bearing 7300 series
- Single Row Angular Contact Ball Bearing 7900 series
- Double Row Angular Contact Ball Bearing 3200 Series
- Double Row Angular Contact Ball Bearing 3300 Series
- Qj2 Series Four Point Angular Contact Ball Bearing
- Qj3 Series Four Point Angular Contact Ball Bearing
-
Tapered Roller Bearings
- Single Row Tapered Roller Bearing 30200 Series
- Single Row Tapered Roller Bearing 30300 Series
- Single Row Tapered Roller Bearing 31300 Series
- Single Row Tapered Roller Bearing 32000 Series
- Single Row Tapered Roller Bearing 32200 Series
- Single Row Tapered Roller Bearing 32300 Series
- Single Row Tapered Roller Bearing 33000 Series
- Single Row Tapered Roller Bearing 33100 Series
- Single Row Tapered Roller Bearing 33200 Series
- Single Row Tapered Roller Bearing Inch Series
- Double Row Tapered Roller Bearing 350000 Series
- Double Row Tapered Roller Bearing Inch Series
- Four-row Tapered Roller Bearing 380000 Series
- Four-row Tapered Roller Bearing Inch Series
-
Needle Roller Bearing
- HK Style Standard Needle Roller Bearing
- HF Style Standard Needle Roller Bearing
- F Style Standard Needle Roller Bearing
- K Style Standard Needle Roller Bearing
- SCE Style Standard Needle Roller Bearing
- CF Style Standard Needle Roller Bearing
- HFL Style Standard Needle Roller Bearing
- TA Style Standard Needle Roller Bearing
- NATR Style Standard Needle Roller Bearing
- BK Style Standard Needle Roller Bearing
- NA Style Standard Needle Roller Bearing
- NK Style Standard Needle Roller Bearing without Inner Ring
- NKI Style Standard Needle Roller Bearing with Inner Ring
- NKIS Style Standard Needle Roller Bearing with Inner Ring
- NKS Style Standard Needle Roller Bearing without Inner Ring
- RNA Standard Needle Roller Bearing without Inner Ring
- Inch-Style Needle Roller Bearing
- MR Series Heavy Duty Needle Roller Bearing
- Self-Aligning Ball Bearings
-
Cylindrical Roller Bearings
- Cylindrical Roller Bearing N Series
- Cylindrical Roller Bearing NU Series
- Cylindrical Roller Bearing NJ Series
- Cylindrical Roller Bearing NF Series
- Cylindrical Roller Bearing NUP Series
- Cylindrical Roller Bearing NFP Series
- Cylindrical Roller Bearing NH(NJ+HJ) Series
- Cylindrical Roller Bearing NN Series
- Cylindrical Roller Bearing NNU Series
- Cylindrical Roller Bearing NNF Series
- Cylindrical Roller Bearing FC Series
- Cylindrical Roller Bearing FCD Series
- SL Sheave Wheel Series Cylindrical Roller Bearing
- Thrust Ball Bearing
-
Pillow Block Bearing
- Pillow Block Bearing UC Inserts
- Pillow Block Bearing UK Inserts
- Pillow Block Bearing SB Inserts
- Pillow Block Bearing SA Inserts
- Pillow Block Bearing CS Inserts
- Pillow Block Bearing UCP
- Pillow Block Bearing UKP
- Pillow Block Bearing SAP
- Pillow Block Bearing SBP
- Pillow Block Bearing UCPA
- Pillow Block Bearing UKPA
- Pillow Block Bearing UCPH
- Pillow Block Bearing UKPH
- Pillow Block Bearing UCF
- Pillow Block Bearing UKF
- Pillow Block Bearing UCFL
- Pillow Block Bearing UKFL
- Pillow Block Bearing UCFC
- Pillow Block Bearing UKFC
- Pillow Block Bearing UCFA
- Pillow Block Bearing UKFA
- Pillow Block Bearing UCFB
- Pillow Block Bearing UKFB
- Pillow Block Bearing UCT
- Pillow Block Bearing UKT
- Pillow Block Bearing UCC
- Pillow Block Bearing SBPP
- Pillow Block Bearing SAPP
-
Linear Bearing
- Standard Linear Bearing LM Series
- Adjustable Type Linear Bearing LM-AJ Series
- Open Type Linear Bearing LM--OP Series
- Lengthened Type Linear Bearing LM-L Series
- Standard Linear Bearing LME Series
- Adjustable Type Linear Bearing LME-AJ Series
- Open Type Linear Bearing LME-OP Series
- Lengthened Type Linear Bearing LME--L Series
- Standard Linear Bearing LMB Series
- Adjustable Type Linear Bearing LMB--AJ Series
- Open Type Linear Bearing LMB--OP Series
- Lengthened Type Linear Bearing LMB--L Series
- Round Flange Linear Bearing LMF Series
- Square Flange Type Linear Bearing LMK Series
- Oval Flange Linear Bearing LMH Series
- Round Flange Linear Bearing LMF--L Series
- Square Flange Type Linear Bearing LMK-L Series
- Oval Flange Linear Bearing LMH-L Series
- Pilot Flange Linear Bearing LMFP Series
- Pilot Flange Linear Bearing LMKP Series
- Pilot Flange Linear Bearing LMHP Series
- Pilot Flange Linear Bearing LMFP-L Series
- Pilot Flange Linear Bearing LMKP-L Series
- Pilot Flange Linear Bearing LMHP-L Series
- Middle Flanged Linear Bearing LMFC-L Series
- Middle Flanged Linear Bearing LMKC-L Series
- Middle Flanged Linear Bearing LMHC-L Series
- Round Flange Linear Bearing LMEF Series
- Square Flange Type Linear Bearing LMEK Series
- Round Flange Linear Bearing LMEF-L Series
- Square Flange Type Linear Bearing LMEK-L Series
- Middle Flanged Linear Bearing LMEKC-L Series
- Middle Flanged Linear Bearing LMEFC-L Series
- Round Flange Linear Bearing LMBF Series
- Square Flange Type Linear Bearing LMBK Series
- Round Flange Linear Bearing LMBF-L Series
- Compact Ball Bushing KH Series
- SC UU Slide Block Unit Series
- SC LUU Linear Case Unit Series
- SC VUU Linear Pillow Block Unit Series
- SBR UU Support Rail Unit Series
- SBR LUU Support Rail Unit Series
- TBR UU Support Rail Unit Series
- SCE UU Slide Block Unit Series
- SCE LUU Linear Case Unit Series
- SCE VUU Linear Pillow Block Unit Series
- Vertical Shaft Support SK Series
- Horizontal Shaft Support SHF Series
- Sleeve Bearing
- Other Bearings
PROJECTA-SET method to adjust tapered roller bearing clearance
by:JNSN
2022-03-16
The PROJECTA-SET method for adjusting TIMKEN tapered roller bearing clearance is similar in concept and application to the ACRO-SET method, but adds additional variety and complexity through the use of special measuring fixtures. This gage projects unmeasurable shims, spacer gaps, or reference surfaces into an easy-to-measure location. This type of gage is usually used for dial indicators or LVDTs that take readings. It is also ideal for designs that employ a tight fit on the adjustment component (inner or outer ring) without sacrificing assembly speed or accuracy. The method (Figure 12) involves two important gauges: a spacer sleeve (reference C) and a tapered measuring sleeve (reference D), usually equal to a known design length (reference X). These sleeves will project an inaccessible spacer gap to the shaft end. To illustrate the PROJECTA-SET method, refer to a typical main shaft assembly (Figure 13). In this back-to-back mounted inner ring adjustment design, bearing clearance is obtained by using a spacer between the small end faces of the two inner rings. In this application the outer and inner rings are slightly tight fit. The required measurement steps are: 1. Place the assembled drive gear shaft (except the upper inner ring and spacer) on the lower platen. Place the gage on the upper bearing outer ring and then into the upper inner ring (Figure 13). 2. Apply pressure to clamp the gauge between the two bearing inner races. In this case, the known axial load can be transferred to the measuring tool by means of the inner disc spring. (Note: The purpose of applying pressure is only to clamp the upper inner ring in place against the spacer sleeve to properly seat the bearing. Some gauges do this with a nut). 3. Swing the measuring instrument (handle) to seat the bearing rollers in place. The LVDT probe measures the axial displacement between the two gauges and the desired spacer size reading is displayed on the digital display. 4. Use a gage to determine the spacer size according to the following equation (Figure 13): S u003d Z - A + K where: S u003d size of spacer required, Z u003d sleeve length (fixed value) A u003d inner and outer rings Variable distance between two corresponding diameters on the cone of the locator. (dimensions for zeroing known) K u003d constant, compensating for system deviation due to gage spring load, average inner ring fit effects (clearance loss) and required bearing clearance G u003d clearance measurement, representing the change in distance A. Distance A includes special considerations for the GPROJECTA-SET method: 1. The size, weight, cost and design of the PROJECTA-SET gage should be checked for the specific application. Typical measurement costs for industry applications, including LVDTs and gage internal springs, are approximately $10,000 each. To improve the efficiency of setting clearance, for assembly volumes exceeding 30,000 per year, designers should consider using special automatic compression designs and the use of compression fixtures in the measurement. 2. If different bearing series and different types of shafts are used in the same application, then separate measuring instruments or interchangeable parts (ie double cones) are required. 3. Just an alternative to setting the clearance for tapered roller bearings (ACRO-SET is similar to PROJECTA-SET and should be considered first). Advantages of the PROJECTA-SET method Eliminates time-consuming disassembly when replacing gaskets or spacers in applications where the inner or outer ring fits tightly Can be easily applied to automated assembly processes Minimizes manual judgment compared to traditional manual methods in the past Minimum training time required to use PROJECTA-SET gages The PROJECTA-SET method provides consistent, reliable set play.
Custom message