PRODUCT
-
Deep Groove Ball Bearing
- Deep Groove Ball Bearing 6000 Series
- Full Complement Deep Groove Ball Bearing 6000-V Series
- Flanged Deep Groove Ball Bearing F6000 Series
- Deep Groove Ball Bearing 6200 Series
- Deep Groove Ball Bearing 6200NR Series
- Deep Groove Ball Bearing 6300 Series
- Deep Groove Ball Bearing 6300NR Series
- Deep Groove Ball Bearing 6400 Series
- Deep Groove Ball Bearing 6000NR Series
- Deep Groove Ball Bearing 6700 Series
- Flanged Deep Groove Ball Bearing F6700 Series
- Deep Groove Ball Bearing 6800 Series
- Full Complement Deep Groove Ball Bearing 6800-V Series
- Flanged Deep Groove Ball Bearing F6800 Series
- Deep Groove Ball Bearing 6900 Series
- Full Complement Deep Groove Ball Bearing 6900-V Series
- Flanged Deep Groove Ball Bearing F6900 Series
- Deep Groove Ball Bearing 62200 Series
- Deep Groove Ball Bearing 62300 Series
- Deep Groove Ball Bearing 63000 Series
- Deep Groove Ball Bearing 63800 Series
- Full Complement Deep Groove Ball Bearing 63800-V Series
- Deep Groove Ball Bearing 16000 Series
- Double Row Deep Groove Ball Bearing 4200 Series
- Double Row Deep Groove Ball Bearing 4300 Series
- Deep Groove Ball Bearing Inch R Series
- Deep Groove Ball Bearing Inch RMS Series
- Miniature Deep Groove Ball Bearing
-
Spherical Roller Bearings
- Spherical Roller Bearing 21300 Series
- Spherical Roller Bearing 22200 Series
- Spherical Roller Bearing 22300 Series
- Spherical Roller Bearing 23000 Series
- Spherical Roller Bearing 23100 Series
- Spherical Roller Bearing 23200 Series
- Spherical Roller Bearing 23900 Series
- Spherical Roller Bearing 24000 Serie
- Spherical Roller Bearing 24100 Series
- Split Style Spherical Roller Bearing
- Thrust Roller Bearing
-
Joint Bearing
- Radial Spherical Joint Plain Bearing GE...E
- Radial Spherical Joint Plain Bearing GE...ES
- Radial Spherical Joint Plain Bearing GE...ES-2RS
- Rod End Joint Bearing PHS/PHSB
- Rod End Joint Bearing GE...C
- Rod End Joint Bearing SI...TK
- Rod End Joint Bearing NHS
- Rod End Joint Bearing GIR...DO
- Rod End Joint Bearing GIR...C
- Rod End Joint Bearing GIR...UK
- Rod End Joint Bearing SQZ...RS
- Rod End Joint Bearing SA...T/K
- Rod End Joint Bearing POS/POSB
- Rod End Joint Bearing NOS
- Rod End Joint Bearing GAR...DO
- Rod End Joint Bearing GAR...C
- Rod End Joint Bearing GAR...UK
- Rod End Joint Bearing SQ...RS
- Rod End Joint Bearing SA...E
-
Angular Contact Ball Bearings
- Single Row Angular Contact Ball Bearing 7000 series
- Single Row Angular Contact Ball Bearing 7200 series
- Single Row Angular Contact Ball Bearing 7300 series
- Single Row Angular Contact Ball Bearing 7900 series
- Double Row Angular Contact Ball Bearing 3200 Series
- Double Row Angular Contact Ball Bearing 3300 Series
- Qj2 Series Four Point Angular Contact Ball Bearing
- Qj3 Series Four Point Angular Contact Ball Bearing
-
Tapered Roller Bearings
- Single Row Tapered Roller Bearing 30200 Series
- Single Row Tapered Roller Bearing 30300 Series
- Single Row Tapered Roller Bearing 31300 Series
- Single Row Tapered Roller Bearing 32000 Series
- Single Row Tapered Roller Bearing 32200 Series
- Single Row Tapered Roller Bearing 32300 Series
- Single Row Tapered Roller Bearing 33000 Series
- Single Row Tapered Roller Bearing 33100 Series
- Single Row Tapered Roller Bearing 33200 Series
- Single Row Tapered Roller Bearing Inch Series
- Double Row Tapered Roller Bearing 350000 Series
- Double Row Tapered Roller Bearing Inch Series
- Four-row Tapered Roller Bearing 380000 Series
- Four-row Tapered Roller Bearing Inch Series
-
Needle Roller Bearing
- HK Style Standard Needle Roller Bearing
- HF Style Standard Needle Roller Bearing
- F Style Standard Needle Roller Bearing
- K Style Standard Needle Roller Bearing
- SCE Style Standard Needle Roller Bearing
- CF Style Standard Needle Roller Bearing
- HFL Style Standard Needle Roller Bearing
- TA Style Standard Needle Roller Bearing
- NATR Style Standard Needle Roller Bearing
- BK Style Standard Needle Roller Bearing
- NA Style Standard Needle Roller Bearing
- NK Style Standard Needle Roller Bearing without Inner Ring
- NKI Style Standard Needle Roller Bearing with Inner Ring
- NKIS Style Standard Needle Roller Bearing with Inner Ring
- NKS Style Standard Needle Roller Bearing without Inner Ring
- RNA Standard Needle Roller Bearing without Inner Ring
- Inch-Style Needle Roller Bearing
- MR Series Heavy Duty Needle Roller Bearing
- Self-Aligning Ball Bearings
-
Cylindrical Roller Bearings
- Cylindrical Roller Bearing N Series
- Cylindrical Roller Bearing NU Series
- Cylindrical Roller Bearing NJ Series
- Cylindrical Roller Bearing NF Series
- Cylindrical Roller Bearing NUP Series
- Cylindrical Roller Bearing NFP Series
- Cylindrical Roller Bearing NH(NJ+HJ) Series
- Cylindrical Roller Bearing NN Series
- Cylindrical Roller Bearing NNU Series
- Cylindrical Roller Bearing NNF Series
- Cylindrical Roller Bearing FC Series
- Cylindrical Roller Bearing FCD Series
- SL Sheave Wheel Series Cylindrical Roller Bearing
- Thrust Ball Bearing
-
Pillow Block Bearing
- Pillow Block Bearing UC Inserts
- Pillow Block Bearing UK Inserts
- Pillow Block Bearing SB Inserts
- Pillow Block Bearing SA Inserts
- Pillow Block Bearing CS Inserts
- Pillow Block Bearing UCP
- Pillow Block Bearing UKP
- Pillow Block Bearing SAP
- Pillow Block Bearing SBP
- Pillow Block Bearing UCPA
- Pillow Block Bearing UKPA
- Pillow Block Bearing UCPH
- Pillow Block Bearing UKPH
- Pillow Block Bearing UCF
- Pillow Block Bearing UKF
- Pillow Block Bearing UCFL
- Pillow Block Bearing UKFL
- Pillow Block Bearing UCFC
- Pillow Block Bearing UKFC
- Pillow Block Bearing UCFA
- Pillow Block Bearing UKFA
- Pillow Block Bearing UCFB
- Pillow Block Bearing UKFB
- Pillow Block Bearing UCT
- Pillow Block Bearing UKT
- Pillow Block Bearing UCC
- Pillow Block Bearing SBPP
- Pillow Block Bearing SAPP
-
Linear Bearing
- Standard Linear Bearing LM Series
- Adjustable Type Linear Bearing LM-AJ Series
- Open Type Linear Bearing LM--OP Series
- Lengthened Type Linear Bearing LM-L Series
- Standard Linear Bearing LME Series
- Adjustable Type Linear Bearing LME-AJ Series
- Open Type Linear Bearing LME-OP Series
- Lengthened Type Linear Bearing LME--L Series
- Standard Linear Bearing LMB Series
- Adjustable Type Linear Bearing LMB--AJ Series
- Open Type Linear Bearing LMB--OP Series
- Lengthened Type Linear Bearing LMB--L Series
- Round Flange Linear Bearing LMF Series
- Square Flange Type Linear Bearing LMK Series
- Oval Flange Linear Bearing LMH Series
- Round Flange Linear Bearing LMF--L Series
- Square Flange Type Linear Bearing LMK-L Series
- Oval Flange Linear Bearing LMH-L Series
- Pilot Flange Linear Bearing LMFP Series
- Pilot Flange Linear Bearing LMKP Series
- Pilot Flange Linear Bearing LMHP Series
- Pilot Flange Linear Bearing LMFP-L Series
- Pilot Flange Linear Bearing LMKP-L Series
- Pilot Flange Linear Bearing LMHP-L Series
- Middle Flanged Linear Bearing LMFC-L Series
- Middle Flanged Linear Bearing LMKC-L Series
- Middle Flanged Linear Bearing LMHC-L Series
- Round Flange Linear Bearing LMEF Series
- Square Flange Type Linear Bearing LMEK Series
- Round Flange Linear Bearing LMEF-L Series
- Square Flange Type Linear Bearing LMEK-L Series
- Middle Flanged Linear Bearing LMEKC-L Series
- Middle Flanged Linear Bearing LMEFC-L Series
- Round Flange Linear Bearing LMBF Series
- Square Flange Type Linear Bearing LMBK Series
- Round Flange Linear Bearing LMBF-L Series
- Compact Ball Bushing KH Series
- SC UU Slide Block Unit Series
- SC LUU Linear Case Unit Series
- SC VUU Linear Pillow Block Unit Series
- SBR UU Support Rail Unit Series
- SBR LUU Support Rail Unit Series
- TBR UU Support Rail Unit Series
- SCE UU Slide Block Unit Series
- SCE LUU Linear Case Unit Series
- SCE VUU Linear Pillow Block Unit Series
- Vertical Shaft Support SK Series
- Horizontal Shaft Support SHF Series
- Sleeve Bearing
- Other Bearings
The measurement method and function of the preload of the machine tool spindle bearing
by:JNSN
2021-12-27
The main purpose of the preload of the machine tool spindle bearing: Generally, the rolling bearing should maintain the proper internal clearance in the running state, and the angular contact ball bearing will be installed with an appropriate negative clearance (axial load) in advance. This is called [preload]. Although the preload has various purposes and functions, the wrong amount of the preload will cause an increase in friction torque, temperature rise, abnormal noise, low life, etc., so you must be extremely careful when applying the preload. The effects of preload are listed as follows: ● Due to the external force, the axial displacement of the bearing is reduced, which can increase the rigidity of the shaft ● As the rigidity of the shaft increases, it can prevent vibration, reduce noise, and improve high speed ● Reduce corrosion caused by external vibration Possibility ● Smooth rotation of the rolling elements ● It can reduce the influence of centrifugal force rotation torque on the rolling elements and control the heating rotation torque. The steel ball of angular contact ball bearing rotates on the revolving shaft (axis) at the same time as the rotating shaft rotates. At this time, due to the angle between the rotation axis and the revolution axis, the steel ball will generate a moment to rotate around the two different axes. This torque is called [Rotational Torque (] Figure 5.1) The size of the rotating torque is directly proportional to the rotation angular velocity and the revolution angular velocity. The rotating torque can be ignored during low-speed rotation, and the heat generated by the slippage of the rotating motion during high-speed rotation cannot be ignored. In order to control the slip caused by rotating motion, the friction force between the steel ball and the raceway surface (u003d rolling element load × friction coefficient) must be maintained. In this sense, a minimum preload amount is sometimes specified. Preload method The preload method of assembling the bearing can be roughly divided into two types: positioning preload and constant pressure preload. The respective legends and features are shown in Table 5.1 (P15). Cylindrical roller bearings with a tapered bore inner diameter are sometimes used with radial preload (negative radial clearance). However, it must be noted that if the radial preload is too large, the bearing life will drop sharply (Figure 5.2). 5-3 Preload measurement a. Use axial load. If the preload is completed by a spring (constant pressure preload), the amount of preload Determine with spring displacement. If the preload is completed with a tightening nut (positioning preload), the amount of preload is determined by the relationship between the clamping torque of the nut and the clamping force. However, the relationship between the clamping torque and the clamping force of the nut varies greatly depending on the accuracy and roughness of the screw part, so attention must be paid. b Use the axial displacement preload amount to determine the relationship between the axial load acting on the bearing and the axial displacement amount. c Use the starting friction torque measurement method of the bearing to make a graph of the relationship between the bearing unit load and the starting torque in advance. But pay attention to the different types of bearings, lubrication conditions, etc. ● Figure 5.2 Cylindrical roller bearing (NN3020) radial clearance and service life An example of the bearing set (Figure 5.3) is preloaded (positioned), and the axial load Tw is applied. The load distribution of the two sets of bearings is calculated graphically based on the axial displacement. The process is described as follows: a. Draw the T-u0026#1048647;a curve of bearing A. b Take the preload Tp on the T axis and terminate at the intersection point P with the curve of bearing A, and draw the T-u0026#1048647;a curve of bearing B through point P. c Connect the two curves with a length equivalent to the external load Tw. d The loads Ta and Tb equivalent to this point become the load of a single bearing under the external load Tw. e The displacement of the bearing is obtained by using the displacement of the bearing Bu0026#1048647;w. The displacement of bearing B will be obtained by subtracting the displacement corresponding to Tp from the displacement corresponding to Tb, because if the bearing is preloaded, the displacement of the two bearings becomes a constant within the range of zero under the external load (Figure 5.3) O-O' is a constant). In other words, bearing B is displaced due to an external load, and bearing A will also have a corresponding amount of slack. If the external load increases and the preload disappears, the load Tb on bearing B will be equal to the external load Tw, and bearing A The load becomes zero. The magnitude of the external load causes the disappearance of the preload, which is represented by Tpo in Figure 5.3.
Custom message