PRODUCT
-
Deep Groove Ball Bearing
- Deep Groove Ball Bearing 6000 Series
- Full Complement Deep Groove Ball Bearing 6000-V Series
- Flanged Deep Groove Ball Bearing F6000 Series
- Deep Groove Ball Bearing 6200 Series
- Deep Groove Ball Bearing 6200NR Series
- Deep Groove Ball Bearing 6300 Series
- Deep Groove Ball Bearing 6300NR Series
- Deep Groove Ball Bearing 6400 Series
- Deep Groove Ball Bearing 6000NR Series
- Deep Groove Ball Bearing 6700 Series
- Flanged Deep Groove Ball Bearing F6700 Series
- Deep Groove Ball Bearing 6800 Series
- Full Complement Deep Groove Ball Bearing 6800-V Series
- Flanged Deep Groove Ball Bearing F6800 Series
- Deep Groove Ball Bearing 6900 Series
- Full Complement Deep Groove Ball Bearing 6900-V Series
- Flanged Deep Groove Ball Bearing F6900 Series
- Deep Groove Ball Bearing 62200 Series
- Deep Groove Ball Bearing 62300 Series
- Deep Groove Ball Bearing 63000 Series
- Deep Groove Ball Bearing 63800 Series
- Full Complement Deep Groove Ball Bearing 63800-V Series
- Deep Groove Ball Bearing 16000 Series
- Double Row Deep Groove Ball Bearing 4200 Series
- Double Row Deep Groove Ball Bearing 4300 Series
- Deep Groove Ball Bearing Inch R Series
- Deep Groove Ball Bearing Inch RMS Series
- Miniature Deep Groove Ball Bearing
-
Spherical Roller Bearings
- Spherical Roller Bearing 21300 Series
- Spherical Roller Bearing 22200 Series
- Spherical Roller Bearing 22300 Series
- Spherical Roller Bearing 23000 Series
- Spherical Roller Bearing 23100 Series
- Spherical Roller Bearing 23200 Series
- Spherical Roller Bearing 23900 Series
- Spherical Roller Bearing 24000 Serie
- Spherical Roller Bearing 24100 Series
- Split Style Spherical Roller Bearing
- Thrust Roller Bearing
-
Joint Bearing
- Radial Spherical Joint Plain Bearing GE...E
- Radial Spherical Joint Plain Bearing GE...ES
- Radial Spherical Joint Plain Bearing GE...ES-2RS
- Rod End Joint Bearing PHS/PHSB
- Rod End Joint Bearing GE...C
- Rod End Joint Bearing SI...TK
- Rod End Joint Bearing NHS
- Rod End Joint Bearing GIR...DO
- Rod End Joint Bearing GIR...C
- Rod End Joint Bearing GIR...UK
- Rod End Joint Bearing SQZ...RS
- Rod End Joint Bearing SA...T/K
- Rod End Joint Bearing POS/POSB
- Rod End Joint Bearing NOS
- Rod End Joint Bearing GAR...DO
- Rod End Joint Bearing GAR...C
- Rod End Joint Bearing GAR...UK
- Rod End Joint Bearing SQ...RS
- Rod End Joint Bearing SA...E
-
Angular Contact Ball Bearings
- Single Row Angular Contact Ball Bearing 7000 series
- Single Row Angular Contact Ball Bearing 7200 series
- Single Row Angular Contact Ball Bearing 7300 series
- Single Row Angular Contact Ball Bearing 7900 series
- Double Row Angular Contact Ball Bearing 3200 Series
- Double Row Angular Contact Ball Bearing 3300 Series
- Qj2 Series Four Point Angular Contact Ball Bearing
- Qj3 Series Four Point Angular Contact Ball Bearing
-
Tapered Roller Bearings
- Single Row Tapered Roller Bearing 30200 Series
- Single Row Tapered Roller Bearing 30300 Series
- Single Row Tapered Roller Bearing 31300 Series
- Single Row Tapered Roller Bearing 32000 Series
- Single Row Tapered Roller Bearing 32200 Series
- Single Row Tapered Roller Bearing 32300 Series
- Single Row Tapered Roller Bearing 33000 Series
- Single Row Tapered Roller Bearing 33100 Series
- Single Row Tapered Roller Bearing 33200 Series
- Single Row Tapered Roller Bearing Inch Series
- Double Row Tapered Roller Bearing 350000 Series
- Double Row Tapered Roller Bearing Inch Series
- Four-row Tapered Roller Bearing 380000 Series
- Four-row Tapered Roller Bearing Inch Series
-
Needle Roller Bearing
- HK Style Standard Needle Roller Bearing
- HF Style Standard Needle Roller Bearing
- F Style Standard Needle Roller Bearing
- K Style Standard Needle Roller Bearing
- SCE Style Standard Needle Roller Bearing
- CF Style Standard Needle Roller Bearing
- HFL Style Standard Needle Roller Bearing
- TA Style Standard Needle Roller Bearing
- NATR Style Standard Needle Roller Bearing
- BK Style Standard Needle Roller Bearing
- NA Style Standard Needle Roller Bearing
- NK Style Standard Needle Roller Bearing without Inner Ring
- NKI Style Standard Needle Roller Bearing with Inner Ring
- NKIS Style Standard Needle Roller Bearing with Inner Ring
- NKS Style Standard Needle Roller Bearing without Inner Ring
- RNA Standard Needle Roller Bearing without Inner Ring
- Inch-Style Needle Roller Bearing
- MR Series Heavy Duty Needle Roller Bearing
- Self-Aligning Ball Bearings
-
Cylindrical Roller Bearings
- Cylindrical Roller Bearing N Series
- Cylindrical Roller Bearing NU Series
- Cylindrical Roller Bearing NJ Series
- Cylindrical Roller Bearing NF Series
- Cylindrical Roller Bearing NUP Series
- Cylindrical Roller Bearing NFP Series
- Cylindrical Roller Bearing NH(NJ+HJ) Series
- Cylindrical Roller Bearing NN Series
- Cylindrical Roller Bearing NNU Series
- Cylindrical Roller Bearing NNF Series
- Cylindrical Roller Bearing FC Series
- Cylindrical Roller Bearing FCD Series
- SL Sheave Wheel Series Cylindrical Roller Bearing
- Thrust Ball Bearing
-
Pillow Block Bearing
- Pillow Block Bearing UC Inserts
- Pillow Block Bearing UK Inserts
- Pillow Block Bearing SB Inserts
- Pillow Block Bearing SA Inserts
- Pillow Block Bearing CS Inserts
- Pillow Block Bearing UCP
- Pillow Block Bearing UKP
- Pillow Block Bearing SAP
- Pillow Block Bearing SBP
- Pillow Block Bearing UCPA
- Pillow Block Bearing UKPA
- Pillow Block Bearing UCPH
- Pillow Block Bearing UKPH
- Pillow Block Bearing UCF
- Pillow Block Bearing UKF
- Pillow Block Bearing UCFL
- Pillow Block Bearing UKFL
- Pillow Block Bearing UCFC
- Pillow Block Bearing UKFC
- Pillow Block Bearing UCFA
- Pillow Block Bearing UKFA
- Pillow Block Bearing UCFB
- Pillow Block Bearing UKFB
- Pillow Block Bearing UCT
- Pillow Block Bearing UKT
- Pillow Block Bearing UCC
- Pillow Block Bearing SBPP
- Pillow Block Bearing SAPP
-
Linear Bearing
- Standard Linear Bearing LM Series
- Adjustable Type Linear Bearing LM-AJ Series
- Open Type Linear Bearing LM--OP Series
- Lengthened Type Linear Bearing LM-L Series
- Standard Linear Bearing LME Series
- Adjustable Type Linear Bearing LME-AJ Series
- Open Type Linear Bearing LME-OP Series
- Lengthened Type Linear Bearing LME--L Series
- Standard Linear Bearing LMB Series
- Adjustable Type Linear Bearing LMB--AJ Series
- Open Type Linear Bearing LMB--OP Series
- Lengthened Type Linear Bearing LMB--L Series
- Round Flange Linear Bearing LMF Series
- Square Flange Type Linear Bearing LMK Series
- Oval Flange Linear Bearing LMH Series
- Round Flange Linear Bearing LMF--L Series
- Square Flange Type Linear Bearing LMK-L Series
- Oval Flange Linear Bearing LMH-L Series
- Pilot Flange Linear Bearing LMFP Series
- Pilot Flange Linear Bearing LMKP Series
- Pilot Flange Linear Bearing LMHP Series
- Pilot Flange Linear Bearing LMFP-L Series
- Pilot Flange Linear Bearing LMKP-L Series
- Pilot Flange Linear Bearing LMHP-L Series
- Middle Flanged Linear Bearing LMFC-L Series
- Middle Flanged Linear Bearing LMKC-L Series
- Middle Flanged Linear Bearing LMHC-L Series
- Round Flange Linear Bearing LMEF Series
- Square Flange Type Linear Bearing LMEK Series
- Round Flange Linear Bearing LMEF-L Series
- Square Flange Type Linear Bearing LMEK-L Series
- Middle Flanged Linear Bearing LMEKC-L Series
- Middle Flanged Linear Bearing LMEFC-L Series
- Round Flange Linear Bearing LMBF Series
- Square Flange Type Linear Bearing LMBK Series
- Round Flange Linear Bearing LMBF-L Series
- Compact Ball Bushing KH Series
- SC UU Slide Block Unit Series
- SC LUU Linear Case Unit Series
- SC VUU Linear Pillow Block Unit Series
- SBR UU Support Rail Unit Series
- SBR LUU Support Rail Unit Series
- TBR UU Support Rail Unit Series
- SCE UU Slide Block Unit Series
- SCE LUU Linear Case Unit Series
- SCE VUU Linear Pillow Block Unit Series
- Vertical Shaft Support SK Series
- Horizontal Shaft Support SHF Series
- Other Bearings
TORQUE-SET method to set tapered roller bearing clearance
by:JNSN
2021-12-30
The TORQUE-SET method sets tapered roller bearing clearance based on the following principle: the torque in the preloaded bearing increases directly with the increase of the applied preload, the former is a function of the latter (usually measured by the size preload ). Laboratory tests show that the torque change of the new bearing is very small, and the bearing torque can be effectively used to predict/measure the dimensional preload clearance. The load pre-test is required to determine this relationship between preload and torque (Figure 14). After measuring the initial torque of the bearing, the required bearing clearance can be achieved by adding or subtracting shims, either the axial clearance or the preload. The gasket table is generally used to help select the final gasket set for each unit (Figure 15). The steps required to implement the TORQUE-SET method are summarized as follows: 1. Use the reference (constant thickness) gasket set to assemble the equipment and ensure that the system is pre-tensioned (16). Note: The bearing preload results produced by each assembly are actually not the same, depending on the cumulative tolerance of each component. 2. Measure the torque of the bearing (Figure 17). 3. Select the final gasket group thickness according to the pre-drawn gasket table (Figure 15). 4. Install the final gasket set, install all bolts, and complete the assembly (Figure 18). Bearing torque is affected by speed and lubricant used. In any application using the TORQUESET method, the lubricant and speed should remain unchanged. The most common method of measuring bearing torque is to use a torque wrench. Sometimes a sleeve that fits the size of the shaft end nut can be used, if not, a special adapter that fits the size of the shaft end can be made. If the bearing seat can be rotated, a torque wrench can be adapted to the bearing seat to measure the torque. If you cannot use a torque wrench, you can use a spring balance to measure the bearing torque. Wrap the rope on a gear or wheel, and use a spring balance to record the pulling force required to keep the component rotating. Torque calculation method: multiply the pulling force by the radius of the gear or wheel that wraps the rope. If there is a gasket table, then this step can be omitted. The gasket table indicates the size of the gasket group corresponding to the tensile force. In the process of measuring bearing torque, while maintaining smooth rotation, let the shaft rotate as slowly as possible. Special precautions for the TORQUE-SET method: 1. Must be able to measure torque. The design must be easy to measure the torque of the bearing. If seals, piston rings and other components contribute to the torque, these torque values u200bu200bmust be identified and separated from the bearing torque. For example, in the case of axial clearance, record the drag torque of the shaft and seal; in the case of preload, add the required bearing torque. 2. Is it possible to reset the tightly fitting parts. When a tight-fitting component is used for bearing adjustment, it is necessary to try to reset or back pressure the component after applying the TORQUE-SET load and determining the final gasket set. 3. The rotating torque of the bearing is affected by the speed and the lubricant used. These must remain constant between the measurement units. The most common method of measuring the turning torque is to use a torque wrench. In the process of measuring torque, while maintaining smooth rotation, rotate the shaft as slowly as possible (approximately 3.5 revolutions per minute). 4. If the load is unbalanced (for example, caused by heavier parts, clutch plates or caliper brakes), the TORQUE-SET method cannot be used. This will cause the torque to change during rotation. 5. For field operations, the TORQUE-SET method cannot be applied to bearings that have been run before (such as run-in). A new set of bearings or alternative methods must be used. Typical TORQUE-SET application The TORQUE-SET method has been successfully applied to various industries and automobiles. Typical applications include drive gear shafts, differential shafts, transmission shafts and gearbox shafts. The advantages of the TORQUE-SET method usually do not require special fixtures or other tools. All that is needed is a torque wrench or a simple spring balance, without measuring the shim gap. The purpose of replacing the gasket set is only to obtain the correct clearance. This method is particularly practical for equipment that is not feasible or very difficult in practice by manual methods. However, it is not practical for very large equipment. The TORQUE-SET method can be used for on-site operations when installing new bearings.
Custom message